Publications of Andrej Bicanski

Journal Article (13)

2025
Journal Article
Pazzaglia, A., Bicanski, A., Ferrario, A., Arreguit, J., Ryczko, D., & Ijspeert, A. (2025). Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord. PLOS Computational Biology, 21. doi:10.1371/journal.pcbi.1012101
2023
Journal Article
Burkhardt, M., Bergelt, J., Gönner, L., Dinkelbach, H. Ü., Beuth, F., Schwarz, A., … Hamker, F. H. (2023). A large-scale neurocomputational model of spatial cognition integrating memory with vision. Neural Networks, 167, 473–488.
2021
Journal Article
Yan, Y., Burgess, N., & Bicanski, A. (2021). A model of head direction and landmark coding in complex environments. PLoS Computational Biology, 17. doi:10.1371/journal.pcbi.1009434
2020
Journal Article
Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21, 453–470.
Journal Article
Edvardsen, V., Bicanski, A., & Burgess, N. (2020). Navigating with grid and place cells in cluttered environments. Hippocampus, 30, 220–232.
2019
Journal Article
Bicanski, A., & Burgess, N. (2019). A computational model of visual recognition memory via grid cells. Current Biology, 29, 979–990.e4.
2018
Journal Article
Bicanski, A., & Burgess, N. (2018). A neural-level model of spatial memory and imagery. ELife, 7. doi:10.7554/eLife.33752
2016
Journal Article
Evans, T., Bicanski, A., Bush, D., & Burgess, N. (2016). How environment and self‐motion combine in neural representations of space. The Journal of Physiology, 594, 6535–6546.
Journal Article
Bicanski, A., & Burgess, N. (2016). Environmental anchoring of head direction in a computational model of retrosplenial cortex. The Journal of Neuroscience, 36, 11601–11618.
2013
Journal Article
Bicanski, A., Ryczko, D., Cabelguen, J.-M., & Ijspeert, A. J. (2013). From lamprey to salamander: An exploratory modeling study on the architecture of the spinal locomotor networks in the salamander. Biological Cybernetics, 107, 565–587.
Journal Article
Bicanski, A., Ryczko, D., Knuesel, J., Harischandra, N., Charrier, V., Ekeberg, Ö., … Ijspeert, A. J. (2013). Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. Biological Cybernetics, 107, 545–564.
Journal Article
Knusel, J., Bicanski, A., Ryczko, D., Cabelguen, J.-M., & Ijspeert, A. J. (2013). A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction. Integrative and Comparative Biology, 53, 269–282.
2011
Journal Article
Harischandra, N., Knuesel, J., Kozlov, A., Bicanski, A., Cabelguen, J.-M., Ijspeert, A., & Ekeberg, Ö. (2011). Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study. Frontiers in Neurorobotics, 5. doi:10.3389/fnbot.2011.00003

Book Chapter (1)

2016
Book Chapter
Ijspeert, A. J., Bicanski, A., Knuesel, J., & Cabelguen, J.-M. (2016). Motor pattern generation. In M. A. Arbib & J. J. Bonaiuto (Eds.), From Neuron to Cognition via Computational Neuroscience (pp. 251–284). Cambridge, MA: MIT Press.

Conference Paper (1)

2023
Conference Paper
Pazzaglia, A., Bicanski, A., Arreguit, J., Ferrario, A., Ryczko, D., & Ijspeert, A. (2023). Coupling spiking neural networks and mechanical simulations to investigate walking and swimming in salamanders. In Proceedings of the 11th International Symposium on Adaptive Motion of Animals and Machines (AMAM2023). Retrieved from http://hdl.handle.net/21.11116/0000-000E-4A17-6

Preprint (2)

2025
Preprint
Reisner, V., König, L., Studenyak, V., Bécu, M., Bicanski, A., & Doeller, C. F. (2025, May 21). Re-enacting steps supports human path integration consistent with motor-corrected grid cell drift. BioRxiv. doi:10.1101/2025.05.18.654711
2024
Preprint
Pazzaglia, A., Bicanski, A., Ferrario, A., Arreguit, J. P., Ryczko, D., & Ijspeert, A. (2024, May 2). Sensory and central contributions to motor pattern generation in a spiking, neuro-mechanical model of the salamander spinal cord. BioRxiv. doi:10.1101/2024.04.24.591044
Go to Editor View