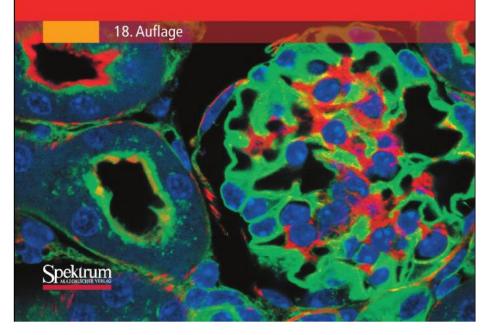
IMPRS NeuroCom

Neurohistology I

Methods of obtaining and processing CNS tissue (Fixation, cryo, paraffin techniques)


> Markus Morawski Paul Flechsig Institute of Brain Research

UNIVERSITÄT LEIPZIG

Medizinische Fakultät

Maria Mulisch Ulrich Welsch (Hrsg.)

Romeis Mikroskopische Technik

DOI https://doi.org/10.1007/978-3-642-55190-1

Neurohistology

Why do we do neurohistology ? (systems perspective)

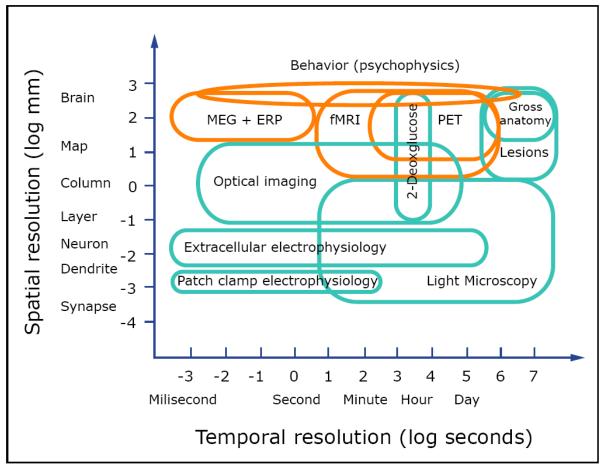


Image by MIT OpenCourseWare.

What is the right tool for the job?

Brain tissue

- Where does the material come from
- Human tissue:
- Body donations, autopsies, surgical / biopsies
- Animal tissue:
- MEZ (Medical Experimental Center of the Medical Faculty of the University of Leipzig (laboratory animal breeding / stable))
- Animal species (most common):
- Mice, rats, gerbils, guinea pigs, rabbits, pigs that are bred for biomedical research.
- The use of animals is subject to strict regulations, the use is subject to a socalled Animal killing notification (T) or an animal experiment application (TVV) beforehand, an approx. 20-page application that must be approved by an animal welfare / ethics committee and the state government (Duration of the approval process 3-12 months)

Why can't all research be done on human autopsy material?

- "Post mortem interval "human autopsy tissue min. 12 hours often up to 7 days
- strong tissue autolysis that makes many examinations impossible
- Mainly "old patients" 65+, often multiple clinical pictures, healthy "controls" are rare
- Genetic manipulation is not possible
- Availability severely restricted approx. 400 autopsies per year
- Biopsy material is extremely limited and only available in very small quantities.

Animal killing

To ensure a safe and "pain free" death, the following factors must always be met in their entirety:

Minimizing stress, fear and excitement before animals pass out Rapid loss of consciousness Respiratory and cardiac arrest after onset of deep anesthesia Loss of brain function Reliable determination of the occurrence of death and irreversibility No endangerment of persons involved and present from the killing procedure

Animal killing

Adult laboratory animals (e.g. mice) are killed by different methods that has to be approved by government and a ethical commission.

CO2 inhalation until death.

- The CO₂ concentration is slowly increased, so even at relatively low concentrations of approx.
 7.5% there is an analgesic effect, at approx. 30-40% (different depending on the species) there is a narcotic effect and if the concentration is increased further, breathing stops .
- Death occurs from hypoxia, which leads to an insufficient supply of oxygen to the brain and death.

Intravenous or intraperitoneal injection with pentobarbital

a medium-acting barbiturate (derivative of barbituric acid). In human medicine it has long been used as a sleep aid, in veterinary medicine and research it is used for euthanasia.

Decapitation (e.g. young rodents) P0-P13, since there is a relatively high resistance to hypoxia (CO₂ killing not practicable)

- Cervical dislocation (Fast without equipment, requires safe technology and handling)
- Rare methods: Electrical stunning and bleeding (Mainly in meat production) Microwaves (complex technology) Shock freezing (Fur loose small animals under 4g) Potassium chloride (Muscle cramps and pain)

Starting tissue unfixed

Human brain, native (unfixed)

Mouse brain, native (unfixed)

Fixation

Immersion

Perfusion

Goal of Fixation

The fixation

is intended to preserve cells and tissue in their natural, current state for examination.

All components should remain unchanged in size and shape and in their normal environment.

should not change molecular properties, colorability, antigenicity and enzyme activities.

should prepare for further preparation, i.e. strengthen the tissue and make it cutable and not brittle or softened.

Problem

- There is no such thing as a fixation that meets all of the aforementioned criteria.
- The closest approximation is obtained through cryopreparation
- For most uses, in particular

light microscopic examination, a cryopreparation is not absolutely necessary.

• You should therefore be clear about the goal you are pursuing before starting the preparation in order to choose the easiest or fastest route with good results.

Fixation Methods

Name	Zusammensetzung	Anwendung	Eignung
BOUINsches Gemisch	 15 ml gesättigte wässrige Pikrinsäure 5 ml 40 % Formalin 1 ml Eisessig 	 direkt vor Gebrauch mischen 2-24 h fixieren in 70-80 % Ethanol mehrmals waschen entwässern und einbetten 	 Übersichtspräparate Cytologische Präparate Protozoen Embryonen <i>in situ</i>-Hybridisierung Immunmarkierung
CARNOYsches Gemisch	 600 ml 99,9 % Ethanol 300 ml Chloroform 100 ml Eisessig 	 direkt vor Gebrauch mischen je nach Größe 1–4 h fixieren 	 Glykogennachweis Darstellung von Kern- strukturen
Formol nach LILLIE	 100 ml 36 % Formol 4 g NaH₂PO₄ x H₂O 6,5 g Na₂HPO₄ 900 ml H₂O pH 7,0 	 direkt vor Gebrauch mischen je nach Größe 1–3 Tage bei 4 °C fixieren 	 Histologische F
Formol-Calcium nach BAKER	 10 ml 36 % Formol 1 g CaCl₂ 90 ml H₂O 	 zur Neutralisation einige Stücke CaCO₃ hinzufügen in dunkler Flasche aufbewahren 	 Hartgewebe
Formol-Alkohol nach BURKHARD	 324 ml 36 % Formol 540 ml Ethanol oder Methanol (absolut) 130 ml Barbital-Natrium- Puffer, pH 7,4 6 g Glucose 	 Aufbewahrung in dunkler Flasche 	 Hartgewebe
Ethanol-Essig- säure-Gemisch nach WOLMAN und BEHER	 950 ml 99,9 % Ethanol 50 ml Eisessig 	 bis 1 cm Größe: 4 h fixieren bei -6-8 °C Nachbehandlung: über Nacht in 99,9 % Ethanol bei RT 2× 20 min in reinem Benzol Paraffineinbettung 	 Nachweise: alkalische Phosphatase Lipase Phosamidase Cholinesterase
MAXIMOWsches Gemisch	 100 ml Müllersche Flüssigkeit 5 g HgCl₂ 10 ml Formol 10 ml 2 % OsO₄ in H₂O 	 direkt vor Gebrauch mischen 1-6 h fixieren auswaschen in Leitungswasser 	 Blut, Blutbildungsorgane Fett
MÜLLERsche Flüssigkeit	 2,5 g Kaliumdichromat 1 g Natriumsulfat 100 ml H₂O 		

Fixation Methods

Pikrinsublimat nach RABL	 100 ml gesättigte, wässrige Pikrinsäure 100 ml gesättigte, wässrige Sublimatlösung (HgCl₂) 200 ml H₂O 	 direkt vor Gebrauch mischen 12 h fixieren Nachbehandlung: Übertragen in niedrig konzentriertes Ethanol aufsteigende Ethanol-Reihe Zusatz von lodtinktur und Lithiumcarbonat in 99,9 % Ethanol 	ältere EmbryonenKeimscheiben
ROSSMANNsche Lösung	 90 ml gesättigte, ethanolische Pikrinsäure 10 ml 40 % Formalin 	 direkt vor Gebrauch mischen 3-8 h fixieren in 99,9 % Ethanol übertragen 	KohlehydrateGlykogennachweis
SCHAFFERsches Gemisch	 100 ml 36 % Formalin (neutralisiert mit CaCO₃) 200 ml 80 % Ethanol pH 7,2-7,4 (evtl. mit 1 N NaOH einstellen) 	 1-2 Tage fixieren in 80 % Ethanol überführen 	 Darstellung von Schleimen bei rascher Weiterbehand- lung: dotterreiche Embry- onen Hartgewebe fluorochrommarkierte Gewebe

Fixation Methods

Name	Zusammensetzung	Anwendung	Eignung
STIEVE s Fixativ	 76 ml gesättigte wässrige HgCl₂-Lösung 20 ml Formol 4 ml Eisessig 	 vor Gebrauch mischen 3-6 h fixieren in 80 % Ethanol übertragen 	 große Präparate
Sublimatalkohol nach APATHY	 3-4 g HgCl₂ 0,5 g NaCl 100 ml 50 % Ethanol 	 vor Gebrauch mischen 12–24 h fixieren in 70 % Ethanol übertragen 	
Sublimat-Formol nach HEIDEN- HAIN	 4,5 g HgCl₂ 0,5 g NaCl 80 ml H₂O 20 ml 40 % Formalin 	 vor Gebrauch mischen 2-24 h fixieren in 70 % Ethanol übertragen 	 bindegewebsreiche Organe
Sublimat-Essig- säure nach LANG	 100 ml gesättigte, wässrige Sublimatlösung (HgCl₂) 5–10 ml Eisessig 	 vor Gebrauch mischen 0,5-6 h fixieren in 70 % Ethanol übertragen 	Zellkernstrukturembryonales Gewebebindegewebsarme Organe
SUSA-Gemisch nach HAIDEN- HAIN	 Lösung A: 4,5 g HgCl₂ 0,5 g NaCl 70 ml H₂O Lösung B: 10 ml 20 % Trichloressigsiure Lösung C: 20 ml Formol Lösung D: 4 ml Eisessig 	 Lösungen A, B, C, D vor Gebrauch mischen 1-24 h fixieren in 96 % Ethanol übertragen und mehrmals wechseln 	 Muskelgewebe kollagenes Bindegewebe
ZENKER sches Gemisch	 100 ml Müllersche Flüssigkeit 5 g Sublimat 0,5-5 ml Eisessig 5 ml 40 % Formalin 	 vor Gebrauch mischen 1-6 h fixieren 24 h in fließendem Leitungs- wasser waschen 	 hämatologische Unter- suchung Übersichtspräparate

Alcoholic fixation

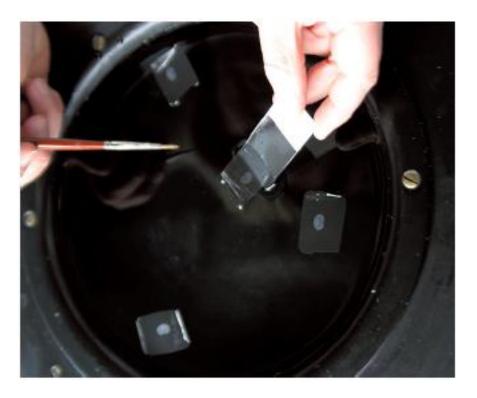
- Ethanol penetrates tissue very quickly.
- Drainage hardens the material greatly.
- The preparations shrink very much.
- Ethanol fixation for special questions that cannot be obtained with other means.
- This includes:
- Mucus, glycogen, uric acid, iron, calcium.
- The following are resolved:
- Fats and fatty substances, cholesterol compounds, chromaffin substances and many enzymes.
- 99.9% ethanol (absolute ethanol) is normally used for fixation. The fixation time is 15 minutes to 4 hours, depending on the size of the samples

Formaldehyde fixation

- Formalin or formol is a commercially available routine fixation as buffered 4% formalin.
- Formalin preserves the shape, color and structure of the preparations very well and also penetrates larger preparations. Fats and lipids are well preserved. In addition, formalin is very suitable for storing the fixed material without affecting the dyeability. It is therefore one of the most common fixatives and is included in many fixation mixtures
- Fixing properties are given primarily by denaturing the proteins and forming methyl bridges.

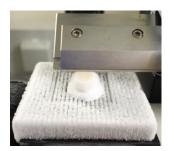
Native vs. fixed tissue

Embedding of tissue


- "Embedding" or preparation of the tissue to make it "cuttable".
- Paraffin embedding requires complete drainage of the tissue (ascending alcohol series 50-100%).
- Paraffin (histo wax) not soluble in alcohol,
- An intermediate is required, organic solvent: e.g. Methyl benzoate (but xylene, toluene or citrus oils are also possible)
- Ascending paraffin levels (at 50-65 ° C) up to complete penetration of the tissue
- Pouring out the tissue and cooling it in paraffin

Paraffin embedding

Paraffin cutting

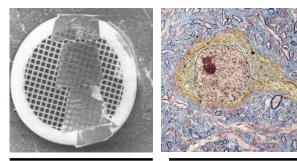


• Freeze cutting

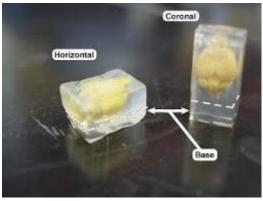
Requirement, cryoprotection of the fixed tissue e.g. by incubation in an anti-freeze medium 30% sucrose

Cryoprotection of the tissue

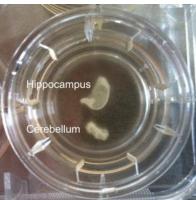
Preparation of tissue sections using the freeze-cut technique



- Ultra- semi-thin cutting (30nm 1μm)
- Embedding in "hard" media (resins)


- Electron microscopy (30-80nm)
- Light microscopy (semi-thin 0.5-1µm)
- Process from tissue to picture ~2-3 weeks

3 mm



• Vibratome cutting (40-400µm) acute cuts for electrophysiology or for organotypic cultures

Starting tissue unfixed

Human brain, native (unfixed tissue)

Mouse brain, native (unfixed tissue)

Native investigation

Live examination Organotypic cell cultures

Protein biochemical, enzymatic, histologically

• Cryostat cutting (nativ tissue)

 Problem what do you do with the native cut? It must be "fixed" for further use!

Advantages / disadvantages of cutting techniques

	Paraffin cutting	Cryo cutting	Vibratome cutting	Ultrathin cutting
Principle	Drained/shrunken tissue, intermedium necessary, sections are drawn on OT, the section must be dewaxed for staining	Aqueous fixed tissue, cryoprotection (e.g. 30% sucrose) necessary, sections can be transferred	Aqueous native tissue, sections can be transferred, live measurements, cultivation possible	Drained tissue, intermedium necessary, contrasting, coloring necessary, cuts are drawn on tiny grids 2- 3mm.
Application	Routine pathology, Research	Research	Research	Research
Pros	Thin cuts from approx. 1 μ m to approx. 15 μ m, extreme durability (over decades)	Quick easy method, free-floating staining	Fast, simple method, free-floating staining, also possible on native ice-cold tissue	Very thin sections from 40nm to 1µm, extreme durability (over decades), ultramicroscopy TEM possible
Cons	Staining on OS, time- consuming preparatory work, due to high temperature. Loss of reactivity, only on fixed tissue	Section thickness 20- 60 µm, cryoprotection necessary, only on fixed tissue, limited shelf life	Cutting thickness 40 - 400 µm, limited shelf life	Elaborate embedding in resins (Epon, Durcupan), strong limitation of the sample size below 5mm, elaborate cutting technique, contrasting, coloring hardly possible